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Abstract—Although many methods have been proposed to
localize a robot using onboard sensors in GPS-denied environ-
ments, achieving robust localization in geometrically degenerated
tunnels remains a challenging problem in robot-based inspection
tasks. In this work, we first present a novel model to analyze
the localizability of the prior map at a given location. Then
we propose the utilization of a single Ultra-Wideband (UWB)
ranging device to compensate for the degeneration of LiDAR
based localization inside tunnels. A probabilistic sensor fusion
method is developed and demonstrated to achieve real-time
robust localization inside a geometrically degenerated tunnel.

I. INTRODUCTION

In this paper, we address the localization problem in
robot-based tunnel inspection tasks. Compared with traditional
human-based approaches, robots are more flexible and efficient
in that it does not require specialized tools to gain mobility,
and is able to access places that are dangerous for humans.
However, localizing a robot inside tunnels can be difficult
even for the state-of-the-art methods due to the darkness and
ambiguity inside the tunnel.

To achieve self-localization, LiDAR is more widely used
than other sensors due to its long ranging capacity and robust-
ness to low illumination. However, since a LiDAR captures
geometry information by scanning the environment, it is more
likely to be affected in geometrically degenerated cases. For
example, a robot navigating through a long straight tunnel
(as seen in Fig. 1 up-left) will not be able to determine its
location along the tunnel since the measurements are identical
everywhere. We could understand the degeneration with an
analogy to a sliding block inside a pipe (see Fig. 1 lower-
left). Since there is no contact force restraining the object, its
motion along the pipe becomes under-constrained.

To identify geometric degeneration in general environments,
a model to predict the localizability is needed. Besides, a theo-
retical model can also assist in designing new sensing capacity
to eliminate degeneration. In this work, we first reformulate
the localizability model proposed in [8] to incorporate robot
orientation, and then propose the utilization of a UWB ranging
device to fully constrain the pose estimation problem. Finally,
the UWB ranging information is fused with a rotating 2D
LiDAR in a Bayesian filtering framework and it is shown that
the localization performance is significantly improved inside
a geometrically degenerated tunnel.

The main contribution of this paper can be summarized as:
(1) We propose a novel localizability evaluation method that is
easy to implement and physically meaningful; (2) We present a
localization system which shows that a single ranging device

Fig. 1: An analogy between robot navigation inside a tunnel
and a sliding block inside a pipe, where the measured surface
normals correspond to contact forces.

is able to significantly reduce the drifts in a geometrically
degenerated tunnel.

The structure of this paper is as follows. Section II discusses
related work on localizability prediction. Section III describes
the proposed localizability model in detail and also introduces
the sensor fusion method. Experimental results are presented
in Section IV and conclusions are drawn in Section V.

II. RELATED WORK

There are plenty of work modelling the sensor localizability
or uncertainty. Perhaps the earliest attempt is from Roy et
al. [5] which is also known as coastal navigation. Their
model is formulated in a probabilistic framework but needs
approximations to compute the uncertainty efficiently. Censi
et al. [1] derive a lower bound of the uncertainty matrix that
ICP algorithms can achieve using Cremar-Rao’s bound, which
actually inspires the development of our method. Liu et al. [3]
provide an numerical implementation of this approach in 2D
and a planner is developed to maximize the determinant of the
computed information matrix. Zhang et al. [7] propose to use a
degeneracy factor to characterize geometric degeneration and
improve the accuracy of ego-motion estimation in the context
of solving an optimization problem. Our previous work [8]
describes a simple method that builds an information matrix
from 3D normal vectors and use its eigenvalues to measure the
localizability. However, it only considers translation and does
not provide an explanation for the metric of localizability. In-
stead of LiDARs, Eudes et al. [2] model the error propagation
from image pixels to reconstructed 3D points. And Vega et al.
[6] propose a learning based approach to predict uncertainty
matrix based on observed features.



Our approach shares a similar idea with [1] and [7] in that
the sensitivity of measurements w.r.t. parameters is used to
identify degeneration. But we formulate the sensitivity from
a constraint set and use a different but physically meaningful
metric to evaluate the localizability.

III. APPROACH

A. The Degeneration of Geometry

The goal of modelling the degeneration of geometry is to
develop theoretical tools to identify degeneration in given
maps and also gain insights on designing reliable sensing
systems. In other words, given the prior map, we would like
to answer whether the current measurement from a specific
sensor contains enough information to estimate the robot state.

1) Localizability of the LiDAR: First of all, we represent
the LiDAR based localization problem as solving a set of
constraint equations:

C(x,R, ρi) = nT
i (x + Rriρi) + di = 0 (1)

where (x,R) ∈ (R3, SO(3)) denotes the robot position and
orientation, and i ∈ {1, 2, · · · ,m} is the point index in a single
laser scan. (ni, di) ∈ (R3,R) encodes the unit normal vector
and distance of the local surface. ri ∈ R3 is the unit range
vector represented in the robot body frame and ρi ∈ R is the
range value. Eqn. 1 describes a simple fact that the scanned
points should align with the map when the robot is at the
correct location.

Now we evaluate the strength of the constraint by measuring
the sensitivity of measurements w.r.t. the robot pose. The
key observation is that if the robot pose is perturbed slightly
but the resulting measurements do not change much, then
the constraint is weak. Otherwise, the constraint is strong.
Therefore, it is natural to compute the derivative of ρi w.r.t. x
and R as a measure of the sensitivity. Stacking the derivatives
computed from all the constraints gives two matrices:

F =

[
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nT
1 r1

· · · − nm

nT
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]T
(2)
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1 r1
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nT
mrm

]T
(3)

(see Appendix A for details). We then perform Eigen Decom-
position (ED) on the information matrices FTF and TTT and
use the eigenvalues to identify the direction of degeneration.
Additionally, we project each row in F and T into the
eigenspace and use the sum of the absolute values as a measure
of the localizability in each dimension.

A closer look at F and T gives a more natural and intuitive
interpretation. As illustrated in Figure 2, we can interpret the
position constraints as forces in the direction of ni (ignoring
the signs) and the orientation constraints as torques in the
direction of ri × ni. Now the F and T are collections
of wrenches (forces and torques) restraining the translation
and rotation of the robot. Aligning with this picture, well-
conditioned F and T indicate a frictionless force-closure,
which is a term used in the field of manipulation mechanics

Fig. 2: An illustration of the visual wrench restraining the
robot position and orientation.

Fig. 3: An illustration of the GPF in 2D. Grey ellipse:
uncertainty of prior belief. Dark red ellipse: uncertainty of
posterior. Light red ellipse: uncertainty of the recovered pose
measurement. The color of particles encodes its weight. Higher
weight corresponds to darker color.

to describe a solid grasp of an object, meaning potential
motions in all directions are prohibited. The characterization of
frictionless force-closure is to check whether the row vectors in
F and T span the space of R3 [4]. Thus we interpret the metric
of the localizability as the magnitude of accumulated virtual
forces and torques gained from the measurements restraining
the uncertainty of pose estimation.

2) Localizability of UWB Ranging: The UWB sensor mea-
sures the distance from the anchor (attached to the environ-
ment) to the target (attached to the robot). Assuming the target
is located at the origin of the robot body frame, we get the
constraint equation:

C(x,R, γ) = ||x− xa||2 − ||γ||2 = 0 (4)

where xa ∈ R3 is the anchor position in the environment and
γ ∈ R is the measured range. Following similar procedures
in finding Eqn. 2 and 3, we obtain the force matrix F for the
UWB:

F =
x− xa

γ
(5)

(see Appendix B). Again F can be treated as a collection of
unit force in the direction from the anchor to the target. Since
the sensor does not provide any information of the orientation,
the torque matrix T is trivially zero.

B. Probabilistic Fusion of LiDAR and UWB

The LiDAR based localization uses an Error State Kalman
Filter (ESKF) to estimate robot pose, velocity and IMU biases,
where IMU integration is the motion model and scan to grid
map matching is the measurement model. We refer readers to
our paper [8] for more details.

The fusion of UWB ranges into the filtering framework is
achieved using a Gaussian Particle Filter (GPF). Specifically,



we first draw a set of particles {xi|i = 1, 2, · · · } according
to the prior belief computed from the motion model. Then
for each particle, we compute a weight using the likelihood
function:

wi = exp

[
−
(
||xi − xa|| − γ

σ

)2
]

(6)

where σ is the ranging noise of the UWB. By computing the
weighted mean and covariance of the particle set, we find the
posterior belief. With both the prior and posterior in hand,
we differentiate them to recover a position measurement. This
pose measurement is finally used to update the ESKF. Fig. 3
illustrates the process of handling UWB ranges to recover a
position measurement.

IV. EXPERIMENTS

A. Overview

Fig. 4: Left: The Smith Hall tunnel at CMU. Right: The robot
setup used for experiments.

Experiments are carried out inside the Smith Hall tunnel
on the campus of CMU. The prior map is acquired offline
by registering scans using the ICP method. Fig. 4 shows the
tunnel and the robot platform. The tunnel is of size 35m ×
2.4m× 2.5m (l×w× h) with pipes on both sides. The robot
is a DJI Matrice 100 drone with customized payloads including
a rotating Hokuyo LiDAR (40Hz, 30m range), a Microstrain
IMU (100Hz) and a Pozyx UWB target board (100Hz, 100m
range with clear line-of-sight).

B. Localizability inside the Tunnel

LiDAR localizability is evaluated at 20 evenly sampled
places along the tunnel. To simulate the measurement at each
place, 4000 points are selected uniformly within the range of
15 meters. The effective range of LiDAR decreases since a
number of points has nearly 90◦ reflection angle. We choose
4000 since that is the amount of downsampled laser points
used for localization per unit time length (1 second). The
localizability is computed by li = si/

∑
si, (i = 1, 2, 3),

where s is the sum of rows of F or T projected into the
eigenspace. Note that x-axes of the eigenspace and the body
frame is parallel as it is the generated direction. However, that
is not necessarily the case for y and z if there is no significant
difference of constraint strength. The computation is repeated
10 times with different set of points and results are averaged.
Fig. 5 shows a top-down view of the sampled poses and the
their localizability. It can be observed that the position and

Fig. 5: LiDAR localizability along the tunnel.

Fig. 6: A comparison of position localizability of the LiDAR
and the UWB ranging sensor.

orientation localizability along x-axis is significantly smaller
than the other two dimensions. This is because position x is
ambiguous along the tunnel except at the right end where
a vertical wall exists to restrain the position. Additionally,
since the tunnel has an arc ceiling and almost identical width
and height, roll angle can not be effectively constrained by
LiDAR measurements. Fortunately, the IMU data is fused in
localization and it directly measures the orientation.

Considering the UWB, we project the range measurements
into the fore-mentioned eigenspace, evaluate the localizability,
and compare that with the LiDAR (see Fig. 6). It is easy to
observe that the UWB compensates the LiDAR localizability
along x-axis. However, we observe a decrease of localizability
in x near the anchor (red dot). This is a singular point where
only position y is measured. Theoretically, additional anchors
may be needed to solve this issue. In practice, this does not
cause failure, since the time of being under-constrained is
short.

C. Tunnel Localization Test

The localization test is conducted by manually flying the
robot from the map origin to the other end of the tunnel. The
UWB anchor board is installed a priori and its location is mea-
sured in the point cloud map. In this experiment, we control the
usage of UWB ranging data and compare the localization per-
formance. When the UWB ranging is disabled, the localization
starts to drift shortly after the robot takes off. However, when



Fig. 7: Up: A comparison of estimated trajectories with/without the UWB ranging. Middle: The groundtruth map built by
manually match multiple local scans. Bottom: The reconstructed map by assembling laser scans with estimated poses.

the UWB ranging information is fused with LiDAR, the robot
is able to successfully localize itself throughout the whole
test. Fig. 7 shows the estimated trajectories, the prior map
and the reconstructed map. Since the localization accuracy is
difficult to be measured without a motion capture system, we
use the reconstructed map to qualitatively evaluate estimation
accuracy. Although the reconstructed map shows larger noise
than the prior map, the side structures are recovered, indicating
correct localization.

V. CONCLUSION

This paper presents a novel geometric degeneration mod-
elling method that encodes the sensitivity of measurements
w.r.t. robot poses. We find an analogy between the force-
closure characterization and our method, which helps to ex-
plain the physical meaning of the localizability. Additionaly,
it is shown that the LiDAR and the UWB ranging sensor are
complementary in terms of localizability and the presented
fusion method is demonstrated to allow for robust localization
inside real geometrically degenerated tunnels.

There are several directions for future work. Firstly, the
constraint model of a localization problem is potentially gen-
eralizable to other sensors such as cameras. Second, it is still
not clear how to compute the total localizability when multiple
sensors of different modalities exist. In our experience, directly
compositing constraints does not give reasonable results since
sensor information may be redundant and the data comes
at different time and frequency. Finally, the proposed fusion
algorithm will be deployed in larger environments, where
multiple UWB anchors may be required.

APPENDIX A

Without losing generality, we could always define the map
frame to align with the robot body frame. In this way, (x,R)
are small and can be treated as perturbations. Therefore the
problem is reduced to evaluate how sensitive is ρi w.r.t. the
perturbations (x,R). This assumption allows using the small

angle approximation R ≈ I + [θ]× to find the linearized
constraint:

C̄(x,θ, ρi) =nT
i (x + (I + [θ]×)riρi) + di

=nT
i x + nT

i riρi + nT
i [θ]×riρi + di

=nT
i x + nT

i riρi − nT
i [ri]×θρi + di

(7)

Then based on the Implicit Function Theorem (IFT), we
have

∂C̄
∂x

dx +
∂C̄
∂ρi

dρi = 0,
∂C̄
∂θ

dθ +
∂C̄
∂ρi

dρi = 0 (8)

which implies

dρi
dx

= −
(
∂C̄
∂x

)(
∂C̄
∂ρi

)−1

= − nT
i

nT
i ri

dρi
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= −
(
∂C̄
∂θ

)(
∂C̄
∂ρi

)−1

= − (ρiri × ni)
T

nT
i ri

(9)

The derivatives are then stacked into matrix F and T.

APPENDIX B

Similarly, based on the IFT, we have

∂C
∂x

dx +
∂C
∂γ

dγ = 0 (10)

which implies

dγ
dx

= −
(
∂C
∂x

)(
∂C
∂γ

)−1

=
x− xa

γ
(11)
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